CATAlgebra > Medium2:32: 32:33:23:23:23:43:43:44:34: 34:3✅ Correct Option: 1Related questions:CAT 2024 Slot 2The sum of the infinite series is 15(15−17)+(15)2((15)2−(17)2)+(15)3((15)3−(17)3)+….\frac{1}{5}\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{5}\right)^{2}\left(\left(\frac{1}{5}\right)^{2}-\left(\frac{1}{7}\right)^{2}\right)+\left(\frac{1}{5}\right)^{3}\left(\left(\frac{1}{5}\right)^{3}-\left(\frac{1}{7}\right)^{3}\right)+\ldots .51(51−71)+(51)2((51)2−(71)2)+(51)3((51)3−(71)3)+….. equal toCAT 2024 Slot 3Consider the sequence t1=1t_1 = 1t1=1, t2=−1t_2 = -1t2=−1 and tn=(n−3n−1)tn−2t_n = \left(\frac{n-3}{n-1}\right) t_{n-2}tn=(n−1n−3)tn−2 for n≥3n \ge 3n≥3. The, the value of the sum 1t2+1t4+1t6+⋯+1t2022+1t2024\frac{1}{t_2} + \frac{1}{t_4} + \frac{1}{t_6} + \dots + \frac{1}{t_{2022}} + \frac{1}{t_{2024}}t21+t41+t61+⋯+t20221+t20241 isCAT 2023 Slot 2Let both the series a1,a2,a3,…a_1, a_2, a_3, \dotsa1,a2,a3,… and b1,b2,b3…b_1, b_2, b_3 \dotsb1,b2,b3… be in arithmetic progression such that the common differences of both the series are prime numbers. If a5=b9a_5 = b_9a5=b9, a19=b19a_{19} = b_{19}a19=b19 and b2=0b_2 = 0b2=0, then a11a_{11}a11 equals