CATAlgebra > Medium1/322/323/324/32✅ Correct Option: 3Related questions:CAT 2024 Slot 3Consider the sequence t1=1t_1 = 1t1=1, t2=−1t_2 = -1t2=−1 and tn=(n−3n−1)tn−2t_n = \left(\frac{n-3}{n-1}\right) t_{n-2}tn=(n−1n−3)tn−2 for n≥3n \ge 3n≥3. The, the value of the sum 1t2+1t4+1t6+⋯+1t2022+1t2024\frac{1}{t_2} + \frac{1}{t_4} + \frac{1}{t_6} + \dots + \frac{1}{t_{2022}} + \frac{1}{t_{2024}}t21+t41+t61+⋯+t20221+t20241 isCAT 2024 Slot 1Suppose x1,x2,x3,…,x100x_{1}, x_{2}, x_{3}, \ldots, x_{100}x1,x2,x3,…,x100 are in arithmetic progression such that x5=−4x_{5}=-4x5=−4 and 2x6+2x9=x11+x132 x_{6}+2 x_{9}=x_{11}+x_{13}2x6+2x9=x11+x13, Then, x100x_{100}x100 equalsCAT 2019 Slot 1If a1,a2….a_{1}, a_{2} \ldots .a1,a2….. are in A.P., then, 1a1+a2+1a2+a3+….+1an+an+1\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots .+\frac{1}{\sqrt{a_{n}}+\sqrt{a_{n+1}}}a1+a21+a2+a31+….+an+an+11 is equal to