CATAlgebra > Medium150001500015000149001490014900146021460214602147981479814798✅ Correct Option: 2Related questions:CAT 2022 Slot 1For any natural number n, suppose the sum of the first n terms of an arithmetic progression is (n+2n2)(n + 2n^2)(n+2n2). If the nthn^{th}nth term of the progression is divisible by 999, then the smallest possible value of nnn isCAT 2021 Slot 2For a sequence of real numbers x1,x2,......xnx_1, x_2, ...... x_nx1,x2,......xn, if x1−x2+x3−....+(−1)n+1xn=n2+2nx_1 - x_2 + x_3 - .... + (-1)^{n + 1} x_n = n^2 + 2nx1−x2+x3−....+(−1)n+1xn=n2+2n for all natural numbers n, then the sum x49+x50x_{49} + x_{50}x49+x50 equalsCAT 2024 Slot 2The sum of the infinite series is 15(15−17)+(15)2((15)2−(17)2)+(15)3((15)3−(17)3)+….\frac{1}{5}\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{5}\right)^{2}\left(\left(\frac{1}{5}\right)^{2}-\left(\frac{1}{7}\right)^{2}\right)+\left(\frac{1}{5}\right)^{3}\left(\left(\frac{1}{5}\right)^{3}-\left(\frac{1}{7}\right)^{3}\right)+\ldots .51(51−71)+(51)2((51)2−(71)2)+(51)3((51)3−(71)3)+….. equal to